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Abstract
Incomplete multi-modal clustering (IMmC) is challenging due to the unexpected missing of some modalities in data. A key
to this problem is to explore complementarity information among different samples with incomplete information of unpaired
data. Despite preliminary progress, existing methods suffer from (1) relying heavily on paired data, and (2) difficulty in
mining complementarity on data with high missing rates. To address the problems, we propose a novel method, Integrated
Heterogeneous Graph ATtention (IHGAT) network, for IMmC. To fully exploit the complementarity among different samples
and modalities, we first construct a set of integrated heterogeneous graphs based on the similarity graph learned from unified
latent representations and the modality-specific availability graphs formed by the existing relations of different samples.
Thereafter, the attention mechanism is applied to the constructed integrated heterogeneous graph to aggregate the embedded
content of heterogeneous neighbors for each node. In this way, the representations of missing modalities can be learned
based on the complementarity information of other samples and their other modalities. Finally, the consistency of probability
distribution is embedded into the network for clustering. Consequently, the proposed method can form a complete latent space
where incomplete information can be supplemented by other related samples via the learned intrinsic structure. Extensive
experiments on eight public datasets show that the proposed IHGAT outperforms existing methods under various settings and
is typically more robust in cases of high missing rates.
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1 Introduction

Various kinds of real-world data are usually represented with
different modalities, such as perception data of intelligent
unmanned systems and medical diagnosis data (Yang et al.,
2019b;Chen et al., 2019;Cao et al., 2022).Among researches
on modeling such multi-modal data, multi-modal clustering
(MmC), which divides samples into clusters in an unsuper-
vised manner, has attracted much attention in recent years
(Zhang et al., 2020;Chen et al., 2022).MmCaims to integrate
multiple features and discover complementary information
among different modalities (Zhang et al., 2018; Xie et al.,
2019; Fang et al., 2023). Compared with single-modality
clustering, MmC can more fully exploit the complemen-
tarity between multiple modalities to improve performance
(Han et al., 2023; Zhan et al., 2018). In real-world appli-

3 Haihe Lab of ITAI, Tianjin, China

4 Department of Computer Science, Boston University, Boston,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02066-y&domain=pdf
http://orcid.org/0000-0002-4788-8655
http://orcid.org/0000-0001-5495-5345
http://orcid.org/0000-0002-4310-9140
http://orcid.org/0009-0002-2173-3847
http://orcid.org/0000-0001-7765-8095


International Journal of Computer Vision

cations, some modalities of instances may be missing due
to the difficulty of data collection or the failure of data
collectors (Kumar et al., 2013; Xiang et al., 2013). When
certain modalities are missing, it leads to a significant loss of
information. Furthermore, the absence ofmodalities severely
hinders exploring complementary and consistent informa-
tion. This indicates that incomplete multi-modal clustering
presents its unique challenges (Wen et al., 2023; Lin et
al., 2023). Such incompleteness further aggravates the dif-
ficulty of mining complementary information that can be
originally mined through complete paired data. Therefore,
how to effectively model the complementarity within incom-
plete data is an essential problem for incompletemulti-modal
clustering (IMmC). The traditional MmC pipeline fails to
address the challenges of IMmC. The core focus of research
in the domain of missing modality multi-modal learning is
to understand the impact of missing modality on modeling
and representation. Unsupervised tasks, including clustering,
prioritize the discovery of underlyingdata structures and rela-
tionships without relying on label information, making it a
more challenging task.When somemodalities are missing in
the data, unsupervised tasks are generally more sensitive and
capable of capturing these changes since they are not con-
strained by label information. In contrast, supervised tasks
primarily focus on establishing a mapping between data and
labels.

Many researchers have dedicated themselves to address-
ing the problem, and existing works can be roughly classified
into three categories. (1) Grouping strategies divide data into
multiple groups and design different models for each group.
Then, these models are fused to alleviate the influence of
missing modalities to obtain the clustering results (Yuan et
al., 2012; Wang et al., 2020b). However, the amount of data
used in this method for training is drastically reduced, which
may lead to over-fitting. To alleviate the scarcity of complete
modalities, the researchers proposed data imputation-based
strategies. (2) Data imputation-based strategies complete the
missing modalities of samples for the subsequent clustering,
which transforms IMmC to a classical multi-modal cluster-
ing problem with complete data (Zhang et al., 2018; Lin et
al., 2021). However, it is difficult to ensure the quality of the
complete modality andmay introduce additional noisy infor-
mation, especially when the rate of missing data increases.
To get rid of the reliance on large-scale complete data, recent
studies have attempted to explore consistency in IMmC. (3)
Consistency strategies (Zhang et al., 2022;Wang et al., 2021)
generate missing modalities of samples by maintaining the
consistent relationships between different modalities for the
whole data. Although they reduce the requirement of paired
data, the training process is quite unstable and is difficult to
converge if the data distribution is complicated, e.g., datawith
highmissing rates. Consequently, the quality of the generated

data is still difficult to control, which significantly deterio-
rates the performance of the models.

By revisiting existing methods, we find that two prob-
lems are still open: (1) Modeling without relying heavily on
paired data. Grouping and data imputation-based strategies
require a large number of paired data to learn the relation-
ships between different modalities. For cases where only few
complete data are available, these methods struggle to com-
plete themissingmodalities in highquality, thus deteriorating
their performance. (2) Mining complementarity on data with
high missing rates. Consistency strategies tend to learn rela-
tionships independently for eachmodality and can work well
on simple cases, e.g., data with low missing rates, with sta-
ble learning and convergence progress. However, the learned
modality representations and structures become inaccurate
when handling data with high missing rates, thus making
them quite restricted to complicated real-world applications.

To this end, we propose a simple yet effective method,
Integrated Heterogeneous Graph ATtention (IHGAT) net-
work, to effectively and stably explore the structural infor-
mation of samples and modalities without paired data. First,
a set of integrated heterogeneous graphs is constructed by
fusing two types of graphs: the similarity graph learned from
unified latent representations and themodality-specific avail-
ability graphs obtained by the existing relations of different
samples. Then, we adopt graph learning to exploit comple-
mentary structural information between samples based on
the constructed integrated heterogeneous graphs. Concretely,
we apply an attention mechanism to aggregate the embedded
content of heterogeneous neighbors for each graph node. In
this way, the incomplete data are embedded into a complete
latent space while exploiting the structural information and
maintaining the modality-missing information. Finally, the
consistency of probability distribution is embedded into the
network through K L divergence for clustering.

The proposed method has two advantages over exist-
ing methods, thus facilitating solving the aforementioned
problems. (1) Low dependency on the complete data. The
proposed method exploits the complementarity information
by constructing a set of integrated heterogeneous graphs in
a learnable unified feature space, where the relationships
between different samples and modalities can be directly
measured by their similarity. Such a simplemethod avoids the
requirement for completemodalities of paired data. (2)Effec-
tive exploitation of intrinsic structural information.Based on
the unified latent representation and constructed heteroge-
neous graphs, the proposed method aggregates the embed-
dings of heterogeneous neighbors for each node using an
attention mechanism. In this way, the structural information
and intra-sample and inter-sample multi-modal relationships
can be fully exploited to enhance the capabilities of repre-
sentation learning for samples with incomplete modalities.
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Six common datasets with different missing rates are used
in our experiments, and the results show that our method
achieves state-of-the-art performance. Typically, our method
is more robust than the baselines in cases of data with high
missing rates, which infers that it can learn complementar-
ity information between samples and modalities by learning
intrinsic structural information without many paired data.
The proposed method does not include any completion parts
and is easy to implement. Source code is available at https://
github.com/yxjdarren/IHGAT.

In summary, our contributions to this work are summa-
rized as follows:

• We propose a structured information mining strategy,
which involves constructing a heterogeneous graph struc-
ture within the data. This approach allows for the com-
prehensive exploration and exploitation of inter-modality
and inter-sample relationships, facilitating the effective
representation of incomplete data.

• The inter-modality relationships are realized by map-
pingmultiple modalities into a unified latent space, while
the inter-sample relationships are established based on
the similarity within the latent space and the incomplete
modality information. Such relationships are further used
to facilitate complementary fusion among similar sam-
ples with graph attention mechanisms.

• Extensive experiments demonstrate the effectiveness of
the proposedmethodon IMmC.Ourmethod canmaintain
outstanding performance compared to the state-of-the-art
baselines as themissing rate increases. Typically, IHGAT
is significantly effective in scenarios with high missing
rates, improving the baselines by up to 14.78 and 15.36%
onAccuracy (ACC) andNormalizedMutual Information
(NMI), respectively.

The remainder of this paper is organized as follows. In
Sect. 2, we first review the related works about incomplete
multi-modal learning and graph representation learning.
Then, we elaborate on details of our work, including basic
notations, framework, and analysis of each module in Sect.
3. Next, the experimental setting and evaluation results are
reported in Sect. 4. Finally, we conclude our work in Sect. 5.

2 RelatedWork

In this section, we briefly review the related incomplete
multi-modal learning and heterogeneous graph learning.

2.1 Incomplete Multi-Modal Learning

In contrast to multi-modal learning, incomplete multi-modal
learning contains some missing modalities in data. Exist-

ing methods can be mainly categorized into three groups:
grouping strategies, data imputation-based strategies, and
consistency strategies.

Grouping strategies learn multiple models on various
groups for late fusion and focus on the use of completeness
theory (Baltrušaitis et al., 2018), which emphasizes comple-
mentarity to learn better latent representations. Specifically,
within each group, samples with missing modalities are
removed, resulting in multiple sets of complete multi-modal
samples. However, the process of removing samples with
missing modalities substantially reduces the available train-
ing data. Yuan et al. (2012) proposed to divide samples
according to the availability of data sources and learn a
base classifier for each data source independently. Xu et
al. (2015) assumed that different modalities are generated
from a shared subspace and investigated a successive over-
relaxation method to solve the objective function. Wang
et al. (2020b) proposed a framework based on knowledge
distillation, utilizing the supplementary information from
all modalities. However, the above methods have a rela-
tively small amount of data in each group due to grouping,
which may lead to overfitting. To address the lack of com-
plete modalities, the data imputation-based strategies have
attracted significant attention from researchers.

Data imputation-based strategies first complete the miss-
ing modalities, and then apply a common MmC algorithm.
Enders (2010) simply imputed missing parts with the aver-
age value of all samples in each modality. Tran et al. (2017)
imputed missing modalities by stacking residual autoen-
coders,which grows iteratively tomodel the residual between
the current prediction and original data. Zhang et al. (2018)
exploited the identical distribution constraint of missing
modality to the other available one in the feature-isomorphic
subspace to accomplish missing modality completion. Lin et
al. (2021) proposed a novel objective that incorporates repre-
sentation learning and data recovery into a unified framework
from themodality of information theory. However, due to the
noise that can be introduced when completing modalities,
there is a trend to explore consistency between modalities.

Consistency strategies contain matrix factorization and
consensus learning based IMmC to learn a consistent repre-
sentation for different modalities. Hotelling (1992) proposed
a matrix completion method by iterative soft thresholding of
singular value decomposition. Shao et al. (2015) proposed
Multi-Incomplete-modality Clustering (MIC), an algorithm
based on weighted nonnegative matrix factorization with
L2,1 regularization. Zhang et al. (2022) proposed a novel
framework to achieve the optimal tradeoff between consis-
tency and complementarity across differentmodalities.Wang
et al. (2021) proposed a generative partial multi-modal clus-
tering model with adaptive fusion and cycle consistency,
and a weighted adaptive fusion scheme was implemented
to exploit the complementary information. Wang et al.
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(2020) maximized the intrinsic correlations among differ-
ent modalities by deep canonical correlation analysis to
learn a consistent subspace representation among incomplete
cross-modal data.While the abovemethods can explore inter-
modality information with less complete data, they cannot
stably learn and be convergent when dealing with data with
high missing rates.

In real-world applications, massive paired data are hardly
collected, and large portions of data may be missing due to
the impact of environmental interference. In contrast to exist-
ing incomplete multi-modal learning methods, our proposed
method requires less paired data and can handle cases of data
with highmissing rates, thus being capable of adapting to and
working in such an open environment easily.

2.2 Graph Representation Learning

Graph learning is able to provide valuable insights into
the structure of the data (Brasó et al., 2022; Brissman et
al., 2023; Michieli & Zanuttigh, 2022). Li et al. (2021)
jointly constructed local incomplete graph matrices, gen-
erated incomplete base partition matrices, stretched them
to produce a unified partition matrix, and employed them
to learn a consensus graph matrix. Wen et al. (2021) pro-
posed a novel method introducing the tensor low-rank
representation constraint and semantic consistency-based
graph constraint. Cheng et al. (2020) designed Multi-View
Attribute Graph ConvolutionNetworks (MAGCN)with two-
pathway encoders that map graph embedding features and
learn modality-consistency information. SinceMAGCNwas
designed assuming all modalities were fully and adequately
observed, the design of its reconstruction loss functions and
geometric consistency loss functions heavily relied on data
completeness.Wen et al. (2020) developed a joint framework
for graph completion and consensus representation learn-
ing, which introduces some adaptive weights to balance the
importance of different modalities during consensus repre-
sentation learning.

Unlike homogeneous graphs, attribute information is inte-
grated into the clustering analysis on heterogeneous graphs.
Heterogeneous graph learning is to learn effective represen-
tation from data of different attributes that are organized in
multiple relation graphs (Wang et al., 2019; Zhang et al.,
2019). Usually, constructing heterogeneous graphs requires
considering the difference in neighbor information under dif-
ferent relationships. Therefore, heterogeneous graph neural
networks usually adopt hierarchical aggregation. To imple-
ment the hierarchical aggregation function, heterogeneous
graphs usually need to consider the difference in neighbor
information under different relationships (Chang et al., 2015;
Zhang et al., 2018c).

Different from traditional homogeneous graph structure
learning, considering the heterogeneity of different relations

in the heterogeneous graph, heterogeneous graph structure
learning (Zhao et al., 2021) generates each relation sub-
graph separately. At present, there are relatively few studies
on heterogeneous graph learning applied to IMmC (Both-
orel et al., 2015; Shi et al., 2016). Qi et al. (2012) proposed
heterogeneous random fields to model the structure and con-
tent of social media networks. Li et al. (2017) studied the
problem of clustering objects in an attributed heterogeneous
information network, taking into account the similarities of
objects with respect to both object attribute values and their
structural connectedness in the network. Chen et al. (2020)
represented attributed graphs as star-schema heterogeneous
graphs to capture both structural and attribute similarities,
where attributes are modeled as different types of graph
nodes. Yang et al. (2019a) learned the common subspace
with the adaptive graph fusion, which allows the integration
of complementary and consistent information from different
modalities.

In our work, heterogeneous graphs are constructed to
mine the complementarity information between samples and
modalities deeply. Unlike some usual graph representation
learning methods, we consider the heterogeneity of relations
of different modalities and samples by fusing the similarity
graph and modality-specific availability graphs. By learning
representations based on the heterogeneous graphs, the struc-
tural information inside the incomplete multi-modal data is
learned to exploit the complementarity between different
samples and modalities, which yields compact representa-
tions for incomplete multi-modal clustering.

3 Methodology

In this section, the details of the proposed method are
illustrated. We design an integrated heterogeneous graph
attention network that includes a latent representation learn-
ing layer, an integrated heterogeneous graph construction
layer, and a clustering layer (See Fig. 1). First, a set of inte-
grated heterogeneous graphs is constructed by fusing: (1) the
similarity graph that reflects the neighborhood relations of
samples, and (2) themodality-specific availability graphs that
encode the modality-existence information. Then, the atten-
tion mechanism is applied to the obtained graphs to learn
complete representations of data. Finally, considering the
consistency of the probability distribution, we use K L diver-
gence to measure the non-symmetric difference between two
probability distributions and obtain the clustering results.
Details of different modules are presented in the following
subsections.

Problem Definition. Consider data {Sn}Nn=1, where Sn
is a subset of the complete observations Xn = {x (v)

n }Vv=1
(i.e., S ⊂ X) with N and V being the number of samples
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Fig. 1 The architecture of our method. IHGAT requires only a small
amount of paired data to model missing modalities, focusing more on
internal structural information rather than using modality-completion
methods that may introduce noise. Firstly, we construct a set of inte-
grated heterogeneous graphs based on the similarity graph learned

from unified latent representations and the modality-specific availabil-
ity graphs obtained by the existing relations of different samples. Next,
we apply an attention mechanism to aggregate the embedded content
of heterogeneous neighbors for each node. Finally, the consistency of
probability distribution is embedded into the network for clustering

and modalities, respectively. Xn ∈ RN×V is the n-th sam-
ple with all modalities. IMmC aims to cluster data in which
some samples have missing modalities so that samples Sn
with the arbitrary possible missing-modalities pattern can be
clustered.

3.1 Integrated Heterogeneous Graph Construction

The integrated heterogeneous graphs are composed of
the similarity graph and the modality-specific availability
graphs. We use the consistency loss Lc to measure the non-
symmetric difference between the original distribution and
the target distribution. By embedding Lc into the network,
we can simultaneously optimize both reconstruction loss Lr

and consistency loss Lc within a unified framework. This
approach offers the advantage of allowing the network to cap-
ture the intrinsic structure of data better while capturing the
complementarity between samples and modalities through
integrated heterogeneous graph attention networks, thereby
improving the performance of the model. Next, we elaborate
on the construction of each graph.

3.1.1 Similarity Graph

Similar samples can help each other for representation learn-
ing, and they should be close in the learned latent space. To
this end, we construct the similarity graph to maintain the
local structure of the data by first learning unified latent rep-

resentations of all modalities and then obtaining the graph
based on the similarity of samples in the latent space.

To process samples with arbitrary missing-modality
modes flexibly, we project the samples into a unified latent
space. Ideally, the expression of the hidden layer can extract
the unified expression from each modality. If we denote the
latent space representation of the n-th sample as hn , then the
optimization objective of the elastic implicit space represen-
tations is as follows:

Lr (snv,Sn,hn; �r ) =
∑N

n=1

∑V

v=1
snv

∥∥∥ fv
(
hn; �(v)

r

)
− s(v)

n

∥∥∥
2
,

(1)

where Lr is the reconstruction loss, which aims to learn the
bidirectional mapping between the original data space and
the unified embedding space. ‖ · ‖ represents the l2-norm.
fv

(
hn; �

(v)
r

)
is the reconstruction network for the v-thmodal-

ity parameterized by �
(v)
r , and s(v)

n represents the input of the
v-th modality with the n-th sample. N and V represent the
number of samples andmodalities, respectively. snv indicates
the availability of the n-th sample in the v-th modality, which
is defined as follows:

snv =
{
1, if the n-th instance has the v-th modality
0, otherwise

. (2)
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3.1.2 Learnable Unified Latent Representation

By using multiple individual multi-layer perceptrons as
encoders, different available modalities are encoded into a
unified learnable space hn (regardless of their lost patterns),
where the number of encoders should be the same as modal-
ities. Relatively complete and universal representations are
learned by minimizing Eq. (1), so that any sample with miss-
ing patterns can be reconstructed. This means that the space
has learned the potential elastic representations from the
observation modality.

Generally, the neighborhood structure can be obtained
from a Gaussian-based kernel matrix. We denote the matrix
as Gn ∈ RN×N , and the detailed formulation is as follows:

Gni j =
⎧
⎨

⎩
exp

(
−

∥∥hi−h j
∥∥2

2σ 2

)
, hi ∈ Nk

(
h j

)
or h j ∈ Nk (hi )

0, otherwise
,

(3)

where σ is the standard deviation. Nk (hi ) and Nk
(
h j

)

indicate samples of the K nearest neighbors of hi and h j ,
respectively.

3.1.3 Modality-Specific Availability Graphs

For different modalities, the absence of internal samples
may vary. Two different samples in the same modality can
only interact with each other if they exist at the same time.
We propose modality-specific availability graphs based on
multiple samples in the same modality to make full use of
the similarities between samples. We denote the matrices as
Ge ∈ RV×N×N andG(v)

e ∈ RN×N . The detailed formulation
is defined as follows:

Ge
(v)
i j =

{
1, if both x (v)

i and x (v)
j exist

0, otherwise
, (4)

where x (v)
i and x (v)

j are the v-thmodality of different samples,

Ge =
[
G(1)

e , G(2)
e , G(3)

e , ..., G(V )
e

]
. (5)

3.1.4 Integrated Heterogeneous Graph

To further utilize the complementarity of data information,
we consider fusing the similarity graph and the modality-
specific availability graphs to obtain a set of integrated
heterogeneous graphs. We define the graph adjacency matrix
as follows:

Gad j = Gn · G(v)
e . (6)

Then, we obtain:

G =
[
Gn · G(1)

e , Gn · G(2)
e , ..., Gn · G(V )

e

]
. (7)

3.2 Graph Representation Learning

Given the integrated heterogeneous graphs, we can exploit
structural information to learn complete representation. Our
research is focused on addressing the challenges of incom-
plete multi-modal learning, with a particular emphasis on
harnessing the interrelationships between modalities and
samples in the absence of partial modalities. In other words,
our intention is not to introduce a novel attention mechanism
but rather to make the most of existing methodologies to
explore the interrelationships in data with incomplete modal-
ities in a comprehensive manner. Leveraging the dynamic
adaptability of the attentionmechanism introduced by Graph
Attention Network (GAT) (Veličković et al., 2018), we have
seamlessly incorporated GAT into our framework for the
purpose of exploring the interrelationships between modali-
ties and samples. By leveraging masked self-attention layers
and stacking layers, nodes can attend to the features of their
neighborhoods.

Formally, given the latent representations hn = {h1,h2,
. . . ,hN }, where hn ∈ RD, N is the total number of samples,
and D is the dimension of latent space, the network out-
puts the adjacency matrix Gv generated by multiple graph
learners based on different samples. Each of these sam-
ples is then possible to generate V groups of new features

z(v) =
{
z(v)
1 , z(v)

2 , . . . , z(v)
N

} (
z(v)
n ∈ RF , n = 1, 2, . . . , N

)
,

where N is the number of nodes, F is the number of features
in each node and z(v)

n refers to the feature vector associated
with the n-th node and the v-th modality.

To facilitate graph representation learning, we use GAT
to transform the latent representations into features that are
suitable for graph semantics, which requires a mapping layer
composed of learnable parameters �

(v)
g :

z(v)
n = GAT

(
hn,Gv;�(v)

g

)
, (8)

where hn is the latent representations, Gv is the graph adja-
cency matrix, and �

(v)
g is the parameter set of the GAT.

Based on representations z(v), we use the attentionmecha-
nism to calculate the importance between nodes. As an initial
step, a shared linear transformation, parametrized by aweight
matrix,W ∈ RF ′×F (of potentially different cardinality F ′),
is applied to every node. The importance of each two nodes
can be calculated by a shared attention mechanism a. Thus,
attention coefficients are defined as:

ei j = a
(
Wz(v)

i ,Wz(v)
j

)
. (9)
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The attention mechanism a is a feedforward network,
parametrized by a weight vector −→a ∈ R2F ′

, and ei j indi-
cates the importance of node j to node i . We use an attention
mask to inject the integrated heterogeneous graph structure
into the calculation, and only consider ei j for nodes j ∈ Ni

that have relations in Gv . Projected by a softmax function,
the formula is:

αi j = softmax j
(
ei j

) = exp
(
ei j

)
∑

k∈Ni
exp (eik)

, (10)

where Ni is some neighborhood of node i in the graph.
The attention mechanism uses a single-layer feedforward
network, and applies the LeakyReLU nonlinearity. Fully
expanded out, the attention calculation can be expressed as:

αi j =
exp

(
LeakyReLU

(−→a T
[
Wz(v)

i Wz(v)
j

]))

∑
k∈Ni

exp
(
LeakyReLU

(−→a T
[
Wz(v)

i Wz(v)
k

])) ,

(11)

where ·T represents transposition and [·‖·] is the concatena-
tion operation. Moreover, multi-head attention can be used
to enrich the ability of the method and stabilize the train-
ing process. Each head of attention has its own parameters.
We use splicing to integrate the output of multiple attention
mechanisms, which can be described as follows:

z′(v)
i = ‖Bb=1μ

⎛

⎝
∑

j∈Ni

αb
i jW

bz(v)
j

⎞

⎠ , (12)

where ‖ represents concatenation, μ is the activation func-
tion, αb

i j are normalized attention coefficients computed by

the b-th attention mechanism (ab), B is the number of atten-
tion heads and Wb is the corresponding weight matrix of
input linear transformation.When dealing with the last layer,
we use the average value instead of the concatenation, as fol-
lows

z′(v)
i = μ

⎛

⎝ 1

B

B∑

b=1

∑

j∈Ni

αb
i jW

bz(v)
j

⎞

⎠ , (13)

3.2.1 Consistent Embedding Network

Based on the learned features, we optimize the clustering
task in an end-to-endmanner. Tomeasure the non-symmetric
difference between the original distribution and target distri-
bution, we embed the consistency of probability distribution
into the network. Following (Wang et al., 2018; Tao et al.,
2019), we measure the similarity between integrated node
representations z′(v)

i and the cluster center μ j by adopting

the t-distribution of student. q(v)
i j and p(v)

i j are the elements
of original distribution Q and target distribution P, respec-
tively, which is defined as:

q(v)
i j = (1 + ‖z′(v)

i − μ j‖2/β)−
β+1
2

J∑
j ′=1

(1 + ‖z′(v)
i − μ j ′ ‖2/β)−

β+1
2

, (14)

where ‖ · ‖ represents the l2-norm; μ j is the cluster cen-
ter; J is the number of cluster centers; β is the degree of
t-distribution freedom of the Student, and q(v)

i j is the prob-
ability of assigning node i to cluster j . In our experiments,
the cluster centers {μ j }Jj=1 can be initialized by employing

k-means and the target probability distribution p(v)
i j (0≤ p(v)

i j

≤ 1) can be computed. We obtain p(v)
i j by raising q(v)

i j to the
second power and normalizing by frequency per cluster:

p(v)
i j = q(v)

i j

2
/ fi

J∑
j ′=1

q(v)

i j ′
2
/ f j ′

, (15)

where f j =
M∑
i=1

q(v)
i j are soft cluster frequencies. To com-

pare the similarity of the two probability distributions, we
define our objective as a probability distribution consistency
loss Lc. The clustering loss is defined as minimizing the K L
divergence between an original distribution and a target dis-
tribution. That is to say, Lc is defined as:

Lc(P,Q) = K L(P‖Q) =
∑

v

∑

i

∑

j

p(v)
i j log

p(v)
i j

q(v)
i j

, (16)

where K L is the Kullback–Leibler divergence that mea-
sures the non-symmetric difference between two probability
distributions. (·‖·) represents the separator between two
probability distributions.P andQ are defined by Eq. (15) and
Eq. (14), respectively. Finally, we take the mean of {p(v)

i j }Vv=1
as the ideal distribution.

Accordingly, the overall loss function of the proposed
IHGAT can be formulated as follows:

L = λ1Lc + λ2Lr , (17)

whereLc andLr are the clustering loss and the reconstruction
loss, respectively. The λ1 and λ2 are the trade-off hyper-
parameters of the Lc and Lr , respectively.

We construct a set of integrated heterogeneous graphs
based on the similarity graph learned from unified latent
representations and the modality-specific availability graphs
obtained by the existing relations of different samples. Based

123



International Journal of Computer Vision

Algorithm 1 Algorithm for IHGAT
Input: Incomplete multi-modality dataset {Sn}, the dimensionality of
latent representations γ

and the number of nearest neighbor samples K .

Output: the parameters of the model
{
�

(v)
r

}V

v=1
,
{
�

(v)
g

}V

v=1
, and the

learned representations of samples
{
z′(v)

}V
v=1.

1: for v = 1 to V do
2: �

(v)
r ← �

(v)
r -∂L/∂�

(v)
r

3: end for
4: for n = 1 to N do
5: Update hn with gradient descent:
6: hn ← hn-∂L/∂hn
7: end for
8: for v = 1 to V do
9: Update �

(v)
g with gradient descent:

10: �g
(v) ← �g

(v)-∂L/∂�g
(v)

11: end for

on the constructed integrated heterogeneous graphs, we use
the incomplete multi-modal data as input to optimize the
model parameters for a better representation. Algorithm 1
briefly summarizes the optimization procedures of the pro-
posed method.

4 Experiments

In this section, we conducted comprehensive experiments
on incomplete multi-modal data to evaluate the performance
of our proposed method, followed by the analysis of our
proposed method.

4.1 Metrics and Datasets

For a comprehensive analysis, we conducted extensive exper-
iments on six datasets and adopted two widely used metrics,
includingAccuracy (ACC) andNormalizedMutual Informa-
tion (NMI). High values denote good clustering performance
of the method for both metrics.

CUB (Wah et al., 2011): Caltech-UCSDBirds (CUB) con-
tains 11,788 bird images associated with text descriptions
from 200 different categories (we followed the experimen-
tal settings in Zhang et al. (2022), so the first 10 categories
are used). We extracted 1024-dimensional features based
on images using GoogLeNet, and 300-dimensional features
based on text (Le & Mikolov, 2014).

Football1: A collection of 248 English Premier League
football players and clubs active on Twitter. The disjoint
ground-truth communities correspond to the 20 individual
clubs in the league.

1 http://mlg.ucd.ie/aggregation/index.html.

ORL2: ORL is a popular face database in the field of
face recognition. It contains 400 face images provided by
40 volunteers, with 10 face images from each person. Three
types of features, i.e., LBP,Gabor, and intensity, are extracted
as the three modalities for representing every face image.

PIE3: PIE is a subset containing 680 facial images of 68
subjects, for which the intensity, LBP, and Gabor features
have been extracted.

Politics4: A collection of Irish politicians and political
organizations, assigned to seven disjoint ground truth groups,
according to their affiliation.

3Sources5: 3Sources is collected from three online news
sources: BBC, Reuters, and Guardian. In total, 169 samples
of stories are used, which are reported by all three sources.

ADNI6: The dataset consists of 774 subjects from ADNI-
1, including 226 normal controls (NC), 362MCI and 186AD
subjects. There are only 379 subjects with completeMRI and
PETdata, including 101NC, 185MCI, and 93-AD,where the
missing rate is up to 0.26.We use 93-dimensional ROI-based
features from both MRI and PET data, respectively.

3Sources-partial7: 948 news articles were collected cov-
ering 416 distinct news stories. Specifically, 169 were
reported in all three sources, 194 in two sources, and 53
appeared in a single news source. Each source represents a
unique modality, and the combination of different sources
constitutes multi-modal information. The missing rate of
3Sources-partial is 0.24.

4.2 Experimental Setups

To generate incomplete multi-modal datasets from com-
plete multi-modal datasets, we randomly removed different
modalities within each sample based on themissing rate. The

missing rate was defined as ε =
∑

v Mv

V×N , where Mv indicates
the number of instances without the v-th modality. To evalu-
ate the influence of λ1 and λ2, we changed their value in the
range of {0.01, 0.1, 1, 10, 100, 1000} and {0.01, 0.1, 1, 10,
100, 1000}, respectively. As shown in Fig. 6, IHGAT was
robust to λ1 and λ2, and the proposed method could reach
a high level of performance while λ1 was from the range of
{10, 100, 1000} and λ2 was from the range of {0.01, 0.1, 1}.
For all datasets, the trade-off hyper-parameters λ1 and λ2
were fixed to 100 and 1, respectively. We evaluated the per-
formance and reported the averaged results over five runs of

2 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html.
3 http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/
Home.html.
4 http://mlg.ucd.ie/aggregation/index.html.
5 http://mlg.ucd.ie/datasets/3sources.html.
6 http://www.loni.usc.edu/ADNI.
7 http://erdos.ucd.ie/datasets/3sources.html.
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Table 2 The clustering performance comparison on six datasets with high missing rates (ε)

Dataset Method ACC (%) NMI (%)
ε=0.8 ε=0.9 ε=0.8 ε=0.9

CUB iCmSC [TIP 2020] (Wang et al., 2020) 32.18±2.35 29.09±2.41 42.68±2.73 37.38±2.87

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 35.48±1.99 34.18±2.36 48.89±2.62 43.72±2.84

GP-MVC [TIP 2021] (Wang et al., 2021) 32.96±2.09 30.92±2.38 44.29±2.34 40.72±2.59

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 35.67±1.75 34.59±1.95 48.98±1.82 46.85±1.98

PIMVC[TNNLS 2023] (Deng et al., 2023) 46.83±3.05 46.13±3.12 54.51±3.53 53.98±2.75

GreatF [TCSVT 2023] (Wen et al., 2023a) 45.15±3.28 44.87±3.57 52.95±3.11 52.53±2.92

IHGAT 53.92±2.96 53.23±2.89 60.09±2.58 58.86±2.64

Football iCmSC [TIP 2020] (Wang et al., 2020) 18.96±2.08 17.82±2.61 26.94±2.58 24.73±2.28

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 22.78±1.89 21.96±2.18 32.18±2.55 30.58±2.74

GP-MVC [TIP 2021] (Wang et al., 2021) 20.87±1.96 19.71±2.42 28.48±2.73 26.66±2.47

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 24.18±1.78 23.79±1.96 39.57±1.59 34.82±1.91

PIMVC[TNNLS 2023] (Deng et al., 2023) 30.05±2.96 29.98±2.85 49.87±2.68 49.52±2.81

GreatF [TCSVT 2023] (Wen et al., 2023a) 28.18±2.83 27.97±2.91 48.31±2.58 47.76±2.74

IHGAT 33.89±2.39 32.16±2.43 54.22±2.39 52.24±1.98

ORL iCmSC [TIP 2020] (Wang et al., 2020) 24.28±2.35 22.89±2.27 41.74±2.38 39.94±2.19

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 32.82±2.83 29.96±2.44 51.86±2.72 49.82±2.74

GP-MVC [TIP 2021] (Wang et al., 2021) 25.91±1.98 24.73±2.12 43.59±2.35 41.31±2.48

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 27.56±2.32 25.97±2.85 48.92±1.97 46.18±2.06

PIMVC[TNNLS 2023] (Deng et al., 2023) 47.89±3.05 47.01±3.12 75.01±3.22 74.87±2.63

GreatF [TCSVT 2023] (Wen et al., 2023a) 45.63±3.12 44.97±3.25 73.89±3.34 72.93±2.85

IHGAT 52.96±2.86 52.37±2.93 80.03±2.87 79.89±2.68

PIE iCmSC [TIP 2020] (Wang et al., 2020) 17.57±2.11 15.89±2.51 35.53±2.28 32.96±2.76

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 27.85±2.12 26.17±2.35 67.16±2.26 66.68±2.31

GP-MVC [TIP 2021] (Wang et al., 2021) 18.07±2.28 17.15±2.36 36.08±2.45 35.41±2.38

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 20.12±2.46 18.86±2.73 39.75±2.61 36.87±2.57

PIMVC[TNNLS 2023] (Deng et al., 2023) 33.28±3.15 33.19±2.83 66.57±2.96 66.34±2.84

GreatF [TCSVT 2023] (Wen et al., 2023a) 32.89±2.96 32.46±2.69 65.99±3.07 65.12±2.98

IHGAT 37.53±2.53 37.21±2.72 72.96±2.82 72.59±2.65

Politics iCmSC [TIP 2020] (Wang et al., 2020) 27.17±2.13 23.93±1.92 12.02±1.88 10.81±2.15

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 31.79±2.13 28.96±2.32 14.63±2.27 12.57±2.61

GP-MVC [TIP 2021] (Wang et al., 2021) 28.62±1.94 25.83±1.76 12.24±1.71 11.08±1.85

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 37.81±2.69 36.48±2.37 17.38±2.41 14.94±2.28

PIMVC[TNNLS 2023] (Deng et al., 2023) 47.82±2.76 45.39±2.49 23.57±2.82 15.98±2.76

GreatF [TCSVT 2023] (Wen et al., 2023a) 46.97±2.92 44.51±2.77 22.93±2.59 15.19±2.28

IHGAT 52.16±2.86 48.08±2.58 27.17±2.28 17.25±2.43

3Sources iCmSC [TIP 2020] (Wang et al., 2020) 23.18±2.57 18.92±2.68 6.37±1.83 5.05±2.03

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 30.89±2.77 28.67±2.78 9.86±2.01 8.27±2.15

GP-MVC [TIP 2021] (Wang et al., 2021) 24.89±2.66 20.86±2.69 7.98±1.76 6.14±1.97

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 33.75±2.59 31.58±2.17 9.89±1.59 8.86±2.46

PIMVC[TNNLS 2023] (Deng et al., 2023) 45.21±2.79 44.48±2.66 32.78±2.82 32.15±2.54

GreatF [TCSVT 2023] (Wen et al., 2023a) 48.92±2.83 48.11±2.93 35.97±2.73 34.76±2.62

IHGAT 50.08±2.58 48.57±2.71 36.92±2.36 35.89±2.29

The best results are in Bold, and the second best results are in Italics
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Table 3 The clustering performance comparison on real-world missing data

Dataset Method ACC (%) NMI (%)

ADNI SVD [1992] (Hotelling, 1992) 38.27±0.98 0.95±0.24

Average [2010] (Enders, 2010) 41.68±0.07 1.42±0.09

CRA [CVPR 2017] (Tran et al., 2017) 37.71±1.16 0.42±0.11

iCmSC [TIP 2020] (Wang et al., 2020) 39.96±2.02 2.35±1.18

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 41.85±1.89 4.17±1.27

GP-MVC [TIP 2021] (Wang et al., 2021) 40.57±2.25 3.88±1.41

CPM [TPAMI 2022] (Zhang et al., 2022) 42.39±0.87 4.68±0.39

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 43.98±0.75 5.42±2.51

PIMVC[TNNLS 2023] (Deng et al., 2023) 44.52±1.14 5.73±2.28

GreatF [TCSVT 2023] (Wen et al., 2023a) 44.29±1.38 5.66±2.71

IHGAT 46.96±2.15 5.98±2.96

3Sources-partial SVD [1992] (Hotelling, 1992) 21.79±0.96 2.26±0.38

Average [2010] (Enders, 2010) 27.08±0.81 6.58±0.47

CRA [CVPR 2017] (Tran et al., 2017) 40.05±1.38 27.75±2.64

iCmSC [TIP 2020] (Wang et al., 2020) 48.16±2.54 45.96±2.37

IMVTSC-MVI [AAAI 2021] (Wen et al., 2021) 54.99±2.04 54.37±1.72

GP-MVC [TIP 2021] (Wang et al., 2021) 49.82±2.72 48.76±2.63

CPM [TPAMI 2022] (Zhang et al., 2022) 52.08±3.12 41.97±2.54

CPM-GAN [TPAMI 2022] (Zhang et al., 2022) 54.22±2.07 46.28±2.25

PIMVC[TNNLS 2023] (Deng et al., 2023) 55.86±2.89 54.96±2.73

GreatF [TCSVT 2023] (Wen et al., 2023a) 56.31±2.51 55.72±2.48

IHGAT 57.82±3.01 57.53±2.88

The best results are in Bold, and the second best results are in Italics

experiments. Our algorithm was implemented in Torch 1.9.0
and carried all evaluations on a standard Ubuntu−16.04 sys-
tem with NVIDIA 3090 Graphics Processing Units (GPUs).
We set an initial learning rate of 0.02 on the other datasets
except for the Football and PIE datasets, which had an initial
learning rate of 0.01.

4.3 Baseline Methods

Eight baselinemethodswere used in the experiments, includ-
ing SVD (Hotelling, 1992), Average (Enders, 2010), CRA
(Tran et al., 2017), iCmSC (Wang et al., 2020), IMVTSC-
MVI (Wen et al., 2021), GP-MVC (Wang et al., 2021), CPM
(Zhang et al., 2022),CPM-GAN(Zhang et al., 2022), PIMVC
(Deng et al., 2023), and GreatF (Wen et al., 2023a).

SVD (Hotelling, 1992): SVD is a matrix completion
method by iterative soft thresholding of singular value
decomposition.

Average (Enders, 2010): Average imputes missing parts
with the average value of all samples in each modality.

CRA (Tran et al., 2017): CRA is composed of a set of
stacked residual autoencoders, which can learn complex rela-
tionships among data from different modalities.

iCmSC (Wang et al., 2020): iCmSC is a novel incomplete
cross-modal clustering method that integrates canonical cor-
relation analysis and exclusive representation.

IMVTSC-MVI (Wen et al., 2021): IMVTSC-MVI incor-
porates the feature space based missing-modality inferring
and manifold space based similarity graph learning into a
unified framework.

GP-MVC (Wang et al., 2021): GP-MVC is a generative
partial multi-modal clustering model with adaptive fusion
and cycle consistency to solve the incomplete multi-modal
problem by explicitly generating the data of missing modal-
ities.

CPM (Zhang et al., 2022): CPMprovides the comparative
version of the CPM-Nets without the adversarial strategy.

CPM-GAN (Zhang et al., 2022): CPM-GAN can be
regarded as generators. As for the discriminators, it uses the
same structure as the generators. For the purpose of discrim-
ination, a sigmoid layer is imposed on the output layer of
each discriminator network.

PIMVC (Deng et al., 2023): PIMVC applies projection
learning to IMmC, which solves the problem of information
imbalance between different modalities.

GreatF (Wen et al., 2023a): GreatF provides an adaptive
weightedmatrix factorizationmodel to obtain the representa-
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Fig. 2 Ablation study on (a) CUB, (b) Football, (c) ORL, (d) PIE, (e) Politics, and (f) 3Sources datasets

tion of every modality, which can enhance the weight of the
discriminative features of all modalities for representation
learning.

4.4 Incomplete Multi-Modal Clustering Performance

Experimental results are shown in Table 1. By analyzing the
results, we have the following observations: (1) In terms of
both ACC and NMI, our method achieves promising per-
formance compared with all baselines. It performs the best
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Fig. 3 Visualization of (a) IHGAT, (b) S-IHGAT, and (c) LATENT on
CUB dataset with varying epochs

on most settings of all datasets in terms of both metrics,
which validates the effectiveness of IHGAT. (2) Although
the baselines can also achieve good performance at sev-
eral low missing rates, a clear phenomenon of performance
degeneration can be observed as the rate of missing data
increases. Most existing baselines attempt to complete the
missing modality, which may introduce extra noise when the
missing situation is complex, or the missing rate is high. (3)
On all missing rates, IHGAT generally achieves outstanding
performance on all multi-modal datasets. On six datasets,
we average the ACC and NMI of each method with different
missing rates (ε from 0.1 to 0.5), and our method is 6.74%
higher inACCand 8.75%higher inNMI than the second-best
method.

4.5 Multi-Modal Clustering Performance with High
Missing Rates

Based on the above discussion, we have further analyzed the
most state-of-the-art methods, including iCmSC, IMVTSC-
MVI,GP-MVC, andCPM-GAN inTable 2. In terms ofACC,
taking the missing rate (ε=0.9) for example, our method
improves 18.25, 9.71, 25.4, 17.41, 14.35, and 16.33% over
the second performers on CUB, Football, ORL, PIE, Politics,
and 3Sources, respectively. IMVTSC-MVI hardly maintains
good performance as the missing rate increases, but CPM-
GAN is rather robust to modality-missing data. The missing
modalities seriously affect the mining of information from
multi-modal data. For a more comprehensive comparison,
we compare the performance of IHGAT and the suboptimal
method at high missing rates by taking the mean value. The
suboptimal methods differ in different datasets, consisting of
IMVTSC-MVI and CPM-GAN. The average ACC and NMI
of IHGAT are 46.00 and 53.43%, respectively, and the sub-
optimal methods are 31.22 and 38.07%, respectively. IHGAT

improves by 14.78 and 15.36% over the suboptimal method
on ACC and NMI, respectively.

The combined analysis of Tables 1 and 2 shows that
most baselines rely heavily on a large amount of paired
multi-modal data by using shared information of latent rep-
resentations to complete the missing modalities. When the
missing modalities are large and complexly distributed, such
methods may introduce additional noise and make it difficult
to effectively complete the missing modalities. The above
observations further validate the advantages of IHGAT. This
suggests that it is beneficial to learn a more compact com-
mon representation for incompletemulti-modal clustering by
considering both the structural information of missing data
and the available information of non-missing data. It is clear
that IHGAT is superior and more competitive, especially as
the missing rate increases. This implies that our method can
effectively explore the complex relationship between modal-
ities and samples, even with a relatively large incomplete
sample ratio.

4.6 Multi-Modal Clustering Performance on
Real-World Missing Data

The existing IMmC is mostly based on publicly available
multi-modal datasets, created by randomly removing por-
tions of the data to form incomplete multi-modal datasets. In
existing research, it is rare to encounter real-world incom-
plete multi-modal datasets. To further validate the effective-
ness of IHGAT in real-world scenarios, we conducted exper-
iments on two real-world incomplete multi-modal datasets,
namely ADNI and 3Sources-partial.

As presented in Table 3, IHGAT still performs well on
real-world missing datasets. In real-world scenarios, there
are usually incomplete cases for multi-modal data. For
instance, within medical applications, diverse subjects typi-
cally undergo various types of examinations. In the realm of
web analysis, some websites encompass a variety of content,
including text, images, and videos, while others may contain
only a subset of these, resulting in data with missing modal-
ities. As the number of modalities increases, the patterns
of modality-missing, denoting the combinations of avail-
able modalities, become progressively intricate. Therefore,
research on incomplete multi-modal data holds significant
practical value and has a wide range of application scenar-
ios.

4.7 Ablation Study

To verify the effectiveness of the similarity graph and
modality-specific availability graphs, we visualized the rep-
resentations on the CUB dataset to investigate the perfor-
mance of IHGAT.Figure 3a, b, and c show the representations
of IHGAT, S-IHGAT, and LATENT obtained in different
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epochs. LATENT represents the proposed method with-
out the similarity graph and modality-specific availability
graphs; S-IHGAT uses the similarity graph only, and IHGAT
uses both similarity graph and modality-specific availability
graphs. As the number of epochs increases, the clusters of
IHGAT aremore compact, and themargins between different
classes become more clear. It shows that the similarity graph
and modality-specific availability graphs contribute substan-
tially to the learning representation ability of IHGAT.

To further analyze the contribution of the similarity graph
and modality-specific availability graphs in IHGAT, we con-
ducted the ablation study with respect to the proposed
method. As presented in Fig. 2, S-IHGAT substantially
outperforms LATENT, which numerically indicates that it
would be harmful to overlook the relationship between sam-
ple structures that can enhance multi-modal complementary
information.Besides, IHGATperforms better thanS-IHGAT,
validating the effectiveness of the modality-specific avail-
ability graphs. Under the influence of the similarity graph
andmodality-specific availability graphs, IHGAT can indeed
achieve better clustering results.

Thegraph adjacencymatrix provides the possibility to cor-
relate features and semantic representations, and the intrinsic
structural information can be maintained to obtain more suf-
ficient complementary information of different samples and
modalities. The new features of a specific node are obtained
by adding a nonlinear transformation to a weighted aver-
age of the neighboring features of the specific node in terms
of their contribution. The new features are tighter and can
further exploit complementarity. It can be intuitively seen
through Figs. 2 and 3 that the similarity graph and modality-
specific availability graphs have a significant impact on the
performance of our proposed method, mainly because dif-
ferent constraints obtain different features.

As shown inTable 4,we conduct additional ablation exper-
iments to explore the impact of different graph construction
methods, attentionmechanisms, and probability distribution.
This will provide a deeper understanding of the contribu-
tions of these components. Additionally, we employed t-SNE
visualization, as shown in Fig. 4, to illustrate that using mul-
tiple modalities to construct a unified representation results
in more compact intra-class clusters and clearer inter-class
boundaries. While directly aggregating encoder outputs into
a common representation provides some improvement over
single modality usage, utilizing multi-modal information to
build a learnable unified latent representation yields superior
overall performance. Our method reduces its heavy reliance
on paired data by encoding multiple modalities into unified
hidden representations.When the amount of data is large, we
do not have to group the data like other works. The combina-
tion of the similarity graph and modality-specific availability
graphs to form a set of integrated heterogeneous graphs can

Fig. 4 Visualization of (a) Modality-1, (b) Modality-2, (c) Modality-
aggregate, and (d) Modality-learnable on CUB

Fig. 5 Convergence analysis on (a) CUB, (b) Football, (c) ORL, and
(d) 3Sources datasets

better explore the structural information of data and their
relationship with each other.

4.8 Convergence Analysis

To investigate the stability and convergence of the training
process of IHGAT, we showed the convergence curves on
multiple datasets (ε = 0.9) of IHGAT and CPM-GAN, a typi-
cal method of consistency strategy, respectively. As shown in
Fig. 5, The training process of CPM-GAN is quite unstable
on data with high missing rates. Consequently, the quality
of the generator is challenging to control, which degrades
the performance of the model significantly. Moreover, it also
reveals the potential risk of introducing additional noise by
the method of completing missing modalities with highly
missing data. By contrast, IHGAT converges stably and fast
in around 75 epochs, further demonstrating the performance
advantage of IHGAT under complicated data distributions.
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Fig. 6 Effect of the parameters λ1 and λ2 on (a) CUB, (b) ORL, and (c) 3Sources datasets

4.9 Parameter Analysis

Since λ1 and λ2 are the trade-off hyper-parameters that influ-
ence the clustering term and the reconstruction term in the
final loss function, we analyzed the impacts of different val-
ues of λ1 and λ2 on the performance (ε = 0.5), and the results
are shown in Fig. 6. It can be seen that IHGAT is not sensitive
to λ1 and λ2, and the proposed method can reach a high level
of performancewhilstλ1 is from the range of {10, 100, 1000}
and λ2 is from the range of {0.01, 0.1, 1}.

The number of nearest neighbors K and the dimensional-
ity of the latent representations γ are the twomain parameters
of our method. In terms of K , since K nearest neighbors are
used to obtain the similarity graph, we analyzed the influence
of different K values on the proposed method. As shown in
Fig. 7a, it can be observed that too small or large K values
are adverse to the performance of the model. If the K is too
small, it is easy tomake themodel complicated and thus over-
fitting. If the K value is too large, the result will be affected
by distant points. Therefore, a medium K value, specifically
K = 5, is appropriate for our method in the experiments.

In terms of γ , we visualized the influence of different val-
ues of γ on three datasets (ε = 0.5) in Fig. 7b, where the
values of γ are ranged from {16, 32, 64, 128, 256}. Ten tri-
als of experiments are conducted , and the average values of
ACC and NMI are reported as the final results. According

to Fig. 7b, it can be observed that different parameter set-
tings greatly affect the performance of the method, and most
datasets achieve better performance with γ in 64, which is
by default a good choice.

5 Conclusion

In this paper, we proposed an effective method that deeply
mines structural information to use complementarity infor-
mation of different samples for IMmC. First, the similarity
graph and modality-specific availability graphs are fused
to form a set of integrated heterogeneous graphs. There-
after, the attention mechanism is applied to the obtained
integrated heterogeneous graphs to capture the complemen-
tarity information among different samples and modalities.
In this way, complete representations can be learned for
data with incomplete modalities. Finally, clustering is per-
formed on the learned representations via embedding the
consistency of probability distribution into the network. The
proposed method does not require a large amount of paired
data to model the missing modalities and shows significant
improvements over the comparedmethods on six challenging
benchmark datasets. More clear advantages of the proposed
method over baselines can be observed with high missing
rates of incomplete data.
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Fig. 7 Effect of the parameters (a) the number of nearest neighbor
samples K and (b) the dimensionality of the latent representations in
terms of ACC and NMI, respectively
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